Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Article in English | IMSEAR | ID: sea-177230

ABSTRACT

The present study documents the phytochemical screening and antioxidant properties of ethanolic extract of Termitomyces clypeatus. Phytochemical constituents like phenols, flavonoids and ascorbic acid were much higher than β carotene and lycopene. The analysis of the phenolic compounds performed by HPLC, revealed the presence of pyrogallol (0.223 μg/mg) and cinnamic acid (0.095 μg/mg). Antioxidant activity was evaluated through superoxide radical scavenging assay, DPPH radical scavenging assay, chelating ability, reducing power and total antioxidant capacity determining assays. Their EC50 values ranged from 0.21 μg/ml to 3.22 mg/ml. Result implies that T. clypeatus can not only serve as a food supplement but also be used as treatment for various oxidative stress related diseases.

2.
Indian J Exp Biol ; 2014 Jul; 52(7): 692-704
Article in English | IMSEAR | ID: sea-153749

ABSTRACT

The physiological role of C-reactive protein (CRP), the classical acute-phase protein, is not well documented, despite many reports on biological effects of CRP in vitro and in model systems in vivo. It has been suggested that CRP protects mice against lethal toxicity of bacterial infections by implementing immunological responses. In Achatina fulica CRP is a constitutive multifunctional protein in haemolymph and considered responsible for their survival in the environment for millions of years. The efficacy of Achatina CRP (ACRP) was tested against both Salmonella typhimurium and Bacillus subtilis infections in mice where endogenous CRP level is negligible even after inflammatory stimulus. Further, growth curves of the bacteria revealed that ACRP (50 µg/mL) is bacteriostatic against gram negative salmonellae and bactericidal against gram positive bacilli. ACRP induced energy crises in bacterial cells, inhibited key carbohydrate metabolic enzymes such as phosphofructokinase in glycolysis, isocitrate dehydrogenase in TCA cycle, isocitrate lyase in glyoxylate cycle and fructose-1,6-bisphosphatase in gluconeogenesis. ACRP disturbed the homeostasis of cellular redox potential as well as reduced glutathione status, which is accompanied by an enhanced rate of lipid peroxidation. Annexin V-Cy3/CFDA dual staining clearly showed ACRP induced apoptosis-like death in bacterial cell population. Moreover, immunoblot analyses also indicated apoptosis-like death in ACRP treated bacterial cells, where activation of poly (ADP-ribose) polymerase-1 (PARP) and caspase-3 was noteworthy. It is concluded that metabolic impairment by ACRP in bacterial cells is primarily due to generation of reactive oxygen species and ACRP induced anti-bacterial effect is mediated by metabolic impairment leading to apoptosis-like death in bacterial cells.


Subject(s)
Animals , Anti-Bacterial Agents/pharmacology , Apoptosis/drug effects , Bacillus subtilis/drug effects , Bacillus subtilis/metabolism , C-Reactive Protein/isolation & purification , C-Reactive Protein/pharmacology , Gluconeogenesis/drug effects , Glycolysis/drug effects , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/metabolism , Gram-Negative Bacterial Infections/microbiology , Hemolymph/metabolism , Homeostasis/drug effects , Immunoblotting , Lipid Peroxidation/drug effects , Male , Mice , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Salmonella Infections/drug therapy , Salmonella Infections/metabolism , Salmonella Infections/microbiology , Salmonella typhimurium/drug effects , Salmonella typhimurium/metabolism , Snails
SELECTION OF CITATIONS
SEARCH DETAIL